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SUMMARY

We consider a system with three unknowns in a two-dimensional bounded domain which models the
�ow of a grade-two non-Newtonian �uid. We propose to compute an approximation of the solution
of this problem in two steps: addition of a regularization term, �nite element discretization of the
regularized problem. We prove optimal a priori and a posteriori error estimates and present some
numerical experiments. Copyright ? 2005 John Wiley & Sons, Ltd.

R �ESUM�E

Nous consid�erons un syst�eme �a trois inconnues dans un domaine born�e de dimension 2 qui mod�elise
l’�ecoulement d’un �uide non newtonien de grade 2. Nous proposons de calculer une approximation
de la solution de ce probl�eme en deux �etapes: addition d’un terme de r�egularisation, discr�etisation par
�el�ements �nis du probl�eme r�egularis�e. Nous d�emontrons des estimations d’erreur a priori et a posteriori
optimales et pr�esentons quelques exp�eriences num�eriques.
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1. INTRODUCTION

In a connected bounded open set � in R2 with a Lipschitz-continuous boundary, we consider
the following system, called grade-two �uid model:

−��u+ gradp+ curl(u − ��u)× u = f in �

div u = 0 in �

u = 0 on @�

(1)
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where

• for a vector �eld v with components v1 and v2, curl v is equal to the scalar function
@x1v2 − @x2v1,

• for a scalar function t and a vector �eld v, t × v denotes the vector �eld with components
−tv2 and tv1.

Here, the parameters � and � are real constants, with �¿0, representing respectively the
normal stress modulus and the viscosity (both divided by the constant density), and f denotes
a density of body forces, usually proportional to the gravity acceleration. The unknowns are
the velocity u and a modi�ed pressure p. This non-Newtonian �uid model was introduced
in Reference [1], and it can be noted that, if � is equal to zero, problem (1) reduces to the
standard Navier–Stokes system, provided that p is replaced by p − 1

2 |u|2. The aim of this
paper is to present and analyse a �nite element discretization of this model.
Originally, the grade-two �uid model was not meant to apply to a speci�c material but

it was rather a theoretical model intended to describe several non-Newtonian characteristic
behaviours. It has been extensively studied for a long time, and, besides [1], we refer among
others to References [2–7] for the main results of analysis (see also References [8–10] and
the references therein). A similar but more complex model with application to an ice �ow
has been studied in Reference [11], and recently the equations for a time-dependent version
of this model with �=0 have been considered in Reference [12] for handling turbulent �ows.
From a numerical point of view, discretizing problem (1) with simple Lagrange �nite

elements seems hopeless because the non-linear term involves derivatives of order three.
Therefore following References [4, 5, 13] we introduce the auxiliary variable

z=curl(u − ��u)

So, the �rst equation in (1) becomes

−��u+ gradp+ z × u= f in �

Nevertheless, this equation is not su�cient to derive adequate a priori estimates. So, assuming
that the function f has a square-integrable curl (which is always satis�ed for instance when
f is either the gravity or Coriolis acceleration), we take the curl of the equation above and
this leads to the following transport equation:

�z + �u · ∇z= � curl f + � curl u in �

where u ·∇z denotes the quantity u1@x1z+u2@x2z. Note that no boundary condition is imposed
on z since they are given by u in the transport equation. Hence, we obtain the following
system

−��u+ gradp+ z × u = f in �

div u = 0 in �

�z + �u · ∇z = � curl f + � curl u in �

u = 0 on @�

(2)

Conversely, it is checked in Reference [13, Section 1] that, for each (u; z; p) satisfying (2),
(u; p) is a solution of system (1) and z is equal to curl(u − ��u). The splitting proposed
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DISCRETIZATIONS OF A GRADE-TWO FLUID MODEL 1377

in (2) leads to a formulation that is much easier to handle, both from the theoretical and
numerical points of view. In particular, its analysis does not require that the velocity has a
bounded gradient.
The main properties of formulation (2) have been investigated in Reference [13], where its

equivalent variational formulation is written. Moreover the existence of a solution is proven.
However it seems that not so much work has been done concerning its discretization, apart
from Reference [14]. Our choice of the discretization relies on the fact that the third line
in (2) is a transport equation and that the solution of such a problem is known to have
very weak regularity properties, i.e. that the gradient of its solution is not square-integrable
in the general case. So the main idea is to add a regularization term to it, namely the term
−��z for a positive small parameter �, as �rst proposed in Reference [15]. We perform the
analysis of the regularized problem: We prove the existence of a solution and a convergence
result when � tends to zero, together with an a posteriori estimate of the error induced by
the regularization which gives an idea of the convergence order. Next, we propose a �nite
element discretization of the regularized problem, relying on a standard pair of �nite elements
for the Stokes problem for the u and p unknowns. Several consistent approximations of the z
unknown are possible, we choose the simplest one. We check that the corresponding discrete
problem has a solution in the neighbourhood of any solution of the regularized problem which
is non-singular, in the sense that the linearized problem around this solution is well-posed.
We also prove optimal a priori error estimates in appropriate norms.
In a �nal step, we perform the a posteriori analysis of the problem. Note that this analysis

is now standard for the Stokes problem, even with a nonlinear term as in the �rst two lines
of (2), see Reference [16] for instance. But not so much work has been done concerning the
transport equation which appears in the third line of (2). We refer to Reference [17] for very
interesting estimates concerning a simple transport equation, however with a stabilization term
di�erent from ours, and also to Reference [18] for recent results on a convection–di�usion
equation with small di�usion coe�cient. Here, we exhibit two types of error indicators, related
to the addition of the regularization term and to the �nite element discretization, and we
prove nearly optimal a posteriori estimates. The aim of this part is to provide a tool �rst to
optimize the choice of the parameter � with respect to the �nite element mesh and second
to perform mesh adaptivity in order to increase the e�ciency of the algorithm. We consider
two iterative algorithms for solving the discrete problem: both of them are semi-implicit but,
as �rst proposed in Reference [19], the second one involves a further upwind treatment of
the transport term, which is well-known to enhance the convergence. Numerical experiments
are then described; they are consistent with the analysis and we think that they justify the
choices we make in this paper.
An outline of the paper is as follows:
In Section 2, we recall from Reference [13] the properties of the continuous problem.

Section 3 is devoted to the analysis of the regularized problem and to the proof of estimates
between the solutions of the initial and regularized problems. In Section 4, we propose a
discrete problem, relying on �nite element conforming approximation of the three unknowns
and built from the variational formulation of the regularized problem by the Galerkin method.
We prove optimal a priori error estimates. In Section 5, we describe the two types of error
indicators and prove a posteriori estimates and upper bounds for the indicators. Section 6
is devoted to the description of the iterative algorithms that are used to solve the discrete
problem and to the presentation of numerical tests.
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2. THE CONTINUOUS PROBLEM

In what follows, for 1¡p¡∞, we denote by Lp(�) the space of measurable real-valued
functions v such that |v|p is integrable, with obvious extension to the case p=∞. We also
consider the corresponding Sobolev spaces Wm;p(�) for any nonnegative integer m. We in-
troduce the subspace L20(�) of functions in L2(�) which have a zero integral on �. For any
nonnegative real number s, we need the Hilbert Sobolev spaces Hs(�), provided with the
norm ‖ · ‖Hs(�) and semi-norm | · |Hs(�). As usual, Hs

0(�) stands for the closure in Hs(�) of
the space D(�) of in�nitely di�erentiable functions with a compact support in �. Finally, we
consider the space

H (curl;�)= {g∈L2(�)2; curl g∈L2(�)} (3)

equipped with the natural norm

‖g‖H (curl;�) = (‖g‖2L2(�)2 + ‖curl g‖2L2(�))1=2

Assume that the data f belong to H (curl;�). We consider the variational problem:

Find (u; p; z) in H 1
0 (�)

2 ×L20(�)×L2(�) such that

∀v∈H 1
0 (�)

2; a(u; v) + b(v; p) + A(z; u; v)=
∫
�
f · v dx

∀q∈L20(�); b(u; q)=0

∀t ∈L2(�); c(z; t) + C(u; z; t)= �
∫
�
(curl f)t dx+ �

∫
�
(curl u)t dx

(4)

where the bilinear forms a(·; ·), b(·; ·) and c(·; ·) are given by

a(u; v)= �
∫
�
grad u : grad v dx; b(v; q)=−

∫
�
(div v)q dx

c(z; t)= �
∫
�
zt dx

(5)

while the trilinear forms A(·; ·; ·) and C(·; ·; ·) associated with the nonlinear terms are de�ned,
in a formal way for the moment, by

A(z; u; v)=
∫
�
(z × u) · v dx; C(u; z; t)= �

∫
�
(u · ∇z)t dx (6)

It follows from the density of D(�) in H 1
0 (�) and L2(�) that system (4) is equivalent to

problem (2) when all the equations in this problem are taken in the distribution sense.
The forms a(·; ·), b(·; ·) and c(·; ·) are continuous on H 1(�)2 ×H 1(�)2, H 1(�)2 ×L2(�)

and L2(�)×L2(�), respectively. Moreover the form a(·; ·) is elliptic on H 1
0 (�)

2. As usual for
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the Stokes problem, we introduce the subspace

V (�)= {v∈H 1
0 (�)

2; div v=0 in �} (7)

Indeed, since the range of H 1
0 (�)

2 by the divergence operator is contained in L20(�), V (�)
coincides with the kernel of b(·; ·), hence is closed in H 1

0 (�)
2 (as follows from the continuity

of b(·; ·)). This leads to the reduced problem:

Find (u; z) in V (�)×L2(�) such that

∀v∈V (�); a(u; v) + A(z; u; v)=
∫
�
f · v dx

∀t ∈L2(�); c(z; t) + C(u; z; t)= �
∫
�
(curl f)t dx+ �

∫
�
(curl u)t dx

(8)

It is readily checked that, for any solution (u; p; z) of (4), (u; z) is a solution of (8). Con-
versely, thanks to the inf–sup condition [20, Chapter I, Corollary 2.4]

∀q∈L20(�); sup
v∈H 1

0 (�)
2

b(v; q)
|v|H 1(�)2

¿�‖q‖L2(�) (9)

(where � is a positive constant), for any solution (u; z) of (8), there exists a unique p in
L20(�) such that (u; p; z) is a solution of (4).
We now recall that, for any z in L2(�), the bilinear form A(z; ·; ·) is continuous on

L4(�)2 ×L4(�)2 and that, for any u in H 1(�)2, the bilinear form C(u; ·; ·) is continuous
on Zu ×L2(�), where Zu stands for the space

Zu= {t ∈L2(�); u · ∇t ∈L2(�)} (10)

Moreover, these two forms are antisymmetric, in the sense that

∀z ∈L2(�); ∀v∈L4(�)2; A(z; v; v) = 0 (11)

∀u∈V (�); ∀t ∈Zu; C(u; t; t) = 0 (12)

(we check (12) thanks to the density of the space D( 	�)2 of in�nitely di�erentiable vector
�elds in Zu, which is established in Reference [13, Theorem 3.12]). So taking v equal to u
and t equal to z in the �rst and second line of (8), respectively, and using (9) lead to the
following statement.

Lemma 2.1
There exists a constant c only depending on the geometry of � such that the following a
priori estimates hold for any solution (u; p; z) of problem (4):

�|u|H 1(�)26 c‖f‖L2(�)2 ; �‖z‖L2(�)6 c(‖f‖L2(�)2 + |�|‖curl f‖L2(�))

‖p‖L2(�)6 c‖f‖L2(�)2(1 + �−2(‖f‖L2(�)2 + |�|‖curl f‖L2(�)))
(13)
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From these estimates, it can be checked that, for any �xed z in L2(�), the �rst two lines
in (4) have a unique solution (u; p) and that, for any �xed u in V (�), the third line in (4)
has a unique solution z (this follows from the analysis of the standard transport equation,
see for instance Reference [21] or Reference [22, Lemma 4.4.4.1] for the existence and
References [23, 13] for the uniqueness). Establishing the existence of a solution for the global
system relies on Brouwer’s �xed point theorem, the details of this proof can be found in
Reference [13, Section 2].

Theorem 2.2
For any data f in H (curl;�), problem (4) admits a solution (u; p; z) in H 1

0 (�)
2 ×L20(�)×

L2(�). Moreover the function z belongs to Zu.

Remark 2.3
A su�cient condition on the data for the uniqueness of the solutions (u; p; z) of problem (4)
such that z belongs to H 1(�) is given in Reference [14], however this condition seems too
restrictive in most practical situations.

The regularity properties of the solutions of problem (4) are proven in Reference [14] thanks
to arguments in References [15, 22, 24], see also References [25, 26]. Their proof relies on the
idea that the �rst two lines in (4) can be interpreted as a Stokes problem with data f − z × u
together with a boot-strapping argument on this problem. We sum up these results in the next
two propositions.

Proposition 2.4
For any data f in H (curl;�), any solution (u; p; z) of problem (4) is such that the pair (u; p)
belongs

(i) to W 2;4=3(�)2 ×W 1;4=3(�),
(ii) and moreover, if the domain � is convex, to H 2(�)2 ×H 1(�).

Furthermore, if curl f belongs to Lp(�), the function z belongs to Lp(�), for all p¡+∞.

Further regularity on z, namely the fact that z belongs to H 1(�), is established only with a
further assumption on u (note however that u belongs to W 1;∞(�)2 if � is a convex polygon
and curl f belongs to Lp(�) for some p¿2). We refer to References [14, 15] for the proof
of the following statement in the case of a convex polygon, but it can be checked that, since
the function u vanishes on @�, this regularity property still holds with the same assumptions
for nonconvex domains � (this can be checked by extending u by zero to an open ball
containing 	� and writing the transport equation in this ball).

Proposition 2.5
For any data f in H 1(�)2 and any solution (u; p; z) of problem (4) such that the velocity u
belongs to H 2(�)2 ∩W 1;∞(�)2 and satis�es

|�||u|W 1; ∞(�)2¡� (14)

the function z belongs to H 1(�).
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3. THE REGULARIZED PROBLEM

Let � be a parameter which satis�es 0¡�6 1. We are interested in the regularized problem

−��u� + gradp� + z� × u� = f in �

div u� = 0 in �

−��z� + �z� + �u� · ∇z� = � curl f + � curl u� in �

u� = 0 on @�

�@nz� = 0 on @�

(15)

where the equation on z� is now of Helmholtz type. The introduction of the Laplace operator
requires a boundary condition on z�: Here, we have chosen a Neumann condition, as usual in
a regularization process. In a �rst step we write the variational formulation of this problem
and prove that it admits a solution. We study the convergence of this solution when � tends
to zero. Next, we prove an estimate for the distance between the solutions of problems (2)
and (15).
With the notation of Section 2, the variational formulation of problem (15) can be written

Find (u�; p�; z�) in H 1
0 (�)

2 ×L20(�)×H 1(�) such that

∀v∈H 1
0 (�)

2; a(u�; v) + b(v; p�) + A(z�; u�; v)=
∫
�
f · v dx

∀q∈L20(�); b(u�; q)=0

∀t ∈H 1(�); c�(z�; t) + C(u�; z�; t)= �
∫
�
(curl f)t dx+ �

∫
�
(curl u�)t dx

(16)

where the bilinear form c�(·; ·) is now given by

c�(z; t)= �
∫
�
grad z · grad t dx+ �

∫
�
zt dx

The equivalence of this formulation with problem (15) is readily checked by using density
results.
A reduced formulation of problem (16) involves the kernel V (�) de�ned in (7). It reads:

Find (u�; z�) in V (�)×H 1(�) such that

∀v∈V (�); a(u�; v) + A(z�; u�; v)=
∫
�
f · v dx

∀t ∈H 1(�); c�(z�; t) + C(u�; z�; t)= �
∫
�
(curl f)t dx+ �

∫
�
(curl u�)t dx

(17)

Relying on this formulation and using the same arguments as for Lemma 2.1, we can derive
a priori bounds for the solutions of problem (16). For simplicity, we de�ne the �-dependent
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norm

‖t‖�= c�(t; t)1=2 (18)

Lemma 3.1
There exists a constant c depending only on the geometry of � such that, for all �, 0¡�6 1,
the following a priori estimates hold for any solution (u�; p�; z�) of problem (16):

�|u�|H 1(�)26 c‖f‖L2(�)2 ; ‖z�‖�6 �−1=2(c‖f‖L2(�)2 + |�|‖curl f‖L2(�))

‖p�‖L2(�)6 c‖f‖L2(�)2(1 + �−2(‖f‖L2(�)2 + |�|‖curl f‖L2(�)))
(19)

In order to prove the existence of a solution of problem (16) or (17), we denote by X the
product space V (�)×H 1(�) and we consider the mapping 
� de�ned from X into its dual
space X′ by

∀U =(u; z)∈X; ∀V =(v; t)∈X,

〈
�(U ); V 〉= a(u; v) + A(z; u; v)−
∫
�
f · v dx

+ c�(z; t) + C(u; z; t)− �
∫
�
(curl f)t dx − �

∫
�
(curl u)t dx

where 〈·; ·〉 stands for the duality pairing between X′ and X. It can be checked that the
mapping 
� is continuous on X and moreover satis�es for all U =(u; z) in X,

〈
�(U ); U 〉¿ �|u|2H 1(�)2 − c0‖f‖L2(�)2 |u|H 1(�)2

+ �|z|2H 1(�) + �‖z‖2L2(�) − |�|‖curl f‖L2(�)‖z‖L2(�) − �|u|H 1(�)2‖z‖L2(�)

where c0 denotes the constant of the Poincar�e–Friedrichs inequality (note that, since u belongs
to V (�), the inequality ‖curl u‖L2(�)6 |u|H 1(�)2 is derived thanks to an integration by parts).
This yields

〈
�(U ); U 〉¿ �
4
|u|2H 1(�)2 − c20

�
‖f‖2L2(�)2 + �|z|2H 1(�) +

�
4
‖z‖2L2(�) − �2

�
‖curl f‖2L2(�) (20)

The existence result relies on this last estimate.

Theorem 3.2
For any data f in H (curl;�), problem (16) admits a solution (u�; p�; z�) in H 1

0 (�)
2 ×L20(�)×

H 1(�).

Proof
It is performed in three steps.

(1) Let (Xn)n be an increasing sequence of �nite-dimensional subspaces of X such that
their union is dense in X (the existence of such a sequence is due to the separability
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of X). We set:

�2 =
c20
�

‖f‖2L2(�)2 +
�2

�
‖curl f‖2L2(�)

For all n, using (20), we see that 〈
�(Un); Un〉 is nonnegative for all Un=(un; zn) in
Xn such that

�
4
|un|2H 1(�)2 + �|zn|2H 1(�) +

�
4
‖zn‖2L2(�) =�2

So Brouwer’s �xed point theorem implies the existence of a solution Un in Xn of the
problem

∀Vn ∈Xn; 〈
�(Un); Vn〉=0

and such that
�
4
|un|2H 1(�)2 + �|zn|2H 1(�) +

�
4
‖zn‖2L2(�)6�2

(2) From the previous estimate, there exists a subsequence (Un′)n′ of (Un)n which con-
verges weakly in X. Since the imbedding of H 1(�) into L4(�) is compact, there
exists another subsequence (Un′′)n′′ of (Un′)n′ which converges towards U� strongly in
L4(�)2 ×L4(�). Then, standard arguments yield that U� is a solution of problem (17).

(3) By setting U�=(u�; z�) and using the inf–sup condition (9), we derive the existence
of a function p� in L20(�) such that the triple (u�; p�; z�) is a solution of problem (16).

In contrast to problem (4), the uniqueness of the solution of problem (16) does not require
any further regularity, however the condition needed for that is rather disappointing. We
skip the proof that relies on completely standard arguments, combined with the fact that the
norm of the imbedding of H 1(�) into Lp(�) behaves like p1=2 for large values of p, see
Reference [27].

Proposition 3.3
For any data f in H (curl;�) and any � such that, for some real number p, 2¡p¡+∞, and
an appropriate constant c only depending on the geometry of �,

c
�2

‖f‖L2(�)2

(
1 +

|�|p1=2
�1=2�2

(
1 +

�1=p

�1=p

)
(‖f‖L2(�)2 + |�|‖curl f‖L2(�))

)
¡1 (21)

problem (16) admits at most one solution (u�; p�; z�) in H 1
0 (�)

2 ×L20(�)×H 1(�).

Note that condition (21) for �=0 is exactly the su�cient condition for the uniqueness of
the solution of Navier–Stokes equations, see Reference [20, Chapter IV, Theorem 2.2]. The
dependence on � in condition (21) can be optimized through an appropriate choice of p.
However, even for this choice, this condition is not satis�ed in practical situations, so it is
not used in what follows. The regularity properties of any solution (u�; p�; z�) are now easily
derived from the regularity properties of the Stokes problem and the Laplace equation together
with a boot-strapping argument, see Reference [22] for the details of the proof.
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Proposition 3.4
For any data f in H (curl;�), any solution (u�; p�; z�) of problem (16) belongs to Hs+1(�)2 ×
Hs(�)×Hs+1(�),

(i) for all s, 06 s6 1
2 , in the general case,

(ii) for all s6 s0 when � is a polygon, where the parameter s0 satis�es 1
2¡s06 1 and

only depends on the largest inner angle of �,
(iii) for all s6 1 when � is convex.

Moreover, for these values of s, there exists a constant cf , only depending on the geometry
of �, the norm of f in H (curl;�), �, � and s, such that

‖u�‖Hs+1(�)2 + ‖p�‖Hs(�) + �s+1=2‖z�‖Hs+1(�)6 cf (22)

We now prove the convergence of a subsequence of the solutions (u�; p�; z�) of problem
(16) when � tends to zero. From now on, we assume that the data f belong to H (curl;�).

Theorem 3.5
There exists a sequence (un; pn; zn)n of H 1

0 (�)
2 ×L20(�)×H 1(�) such that

(i) each (un; pn; zn)n is a solution of problem (16) with �= �n,
(ii) the sequence (�n)n tends to zero,
(iii) the sequence (un; pn; zn)n converges towards a solution (u; p; z) of problem (4) weakly

in H 1
0 (�)

2 ×L20(�)×L2(�).

Proof
It follows from Lemma 3.1 that the family of solutions (u�; p�; z�) is bounded in H 1

0 (�)
2 ×

L20(�)×L2(�) independently of �. Moreover, it follows from the imbedding of H 1(�) into
L4(�) that each product z� × u� is bounded in L4=3(�)2. Thus writing the �rst line of problem
(16) as

∀v∈H 1
0 (�)

2; a(u�; v) + b(v; p�)=
∫
�
f · v dx − A(z�; u�; v)

and using the standard regularity properties of the Stokes problem [22] yield that each u�
belongs to W 2;4=3(�)2 and satis�es

‖u�‖W 2; 4=3(�)26 c�−1‖f‖L2(�)2(1 + �−2(‖f‖L2(�)2 + |�|‖curl f‖L2(�)) (23)

By combining (19) and (23), we derive the existence of a sequence (un; pn; zn)n satisfy-
ing parts (i) and (ii) of the theorem, which converges towards a triple (u; z; p) weakly in
(H 3=2(�)∩H 1

0 (�))
2 ×L20(�)×L2(�) and such that the sequence (un)n converges towards u

strongly in H 4=3(�)2 for instance. So it remains to check that (u; p; z) is a solution of pro-
blem (4).

(1) In the �rst line of problem (16), since (un)n converges strongly in L∞(�)2, the se-
quence of nonlinear terms (zn × un) converges to z × u weakly in L2(�). So the triple
(u; p; z) satis�es the �rst line of (4).
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(2) Since the second line of (16) is a linear equation, it is obvious that the triple (u; p; z)
satis�es the second line of (4).

(3) In the third line of (16), we consider a �xed t in H 1(�) and we note that∣∣∣∣�n
∫
�
grad zn · grad t dx

∣∣∣∣ 6 �1=2n ‖zn‖�n |t|H 1(�)

So it follows from (19) that this term tends to zero. On the other hand, we derive by
integration by parts that

C(un; zn; t)=−C(un; t; zn)

Then, the strong convergence of (un)n in L∞(�)2 implies that

lim
n→+∞C(un; zn; t)= − C(u; t; z)

Letting now t run through D(�) yields that the pair (u; z) satis�es the third line of problem
(2) in the distribution sense. Since z, curl u and curl f belong to L2(�), this implies that the
function z belongs to the space Zu de�ned in (10). So, by combining all this with a density
argument, we deduce that the triple (u; p; z) satis�es the third line of (4) for all t in L2(�).
This concludes the proof.

By combining the previous arguments with an energy inequality (see Reference [13] for
analogous results), we can prove that there exists a subsequence of the previous sequence
(un; pn; zn)n which converges towards a solution (u; p; z) of problem (4) strongly in H 1

0 (�)
2 ×

L20(�)×L2(�) (or even strongly in Hs+1(�)2 ×Hs(�)×L2(�); 0¡s¡ 1
2 ). We conclude with

a �rst a posteriori type estimate.
In order to prove this estimate, we introduce the Stokes operator S de�ned as follows: For

any data f in H−1(�)2, Sf is equal to the part u of the solution (u; p) in H 1
0 (�)

2 ×L20(�) of
the equations (we do not make explicit the de�nition of the duality pairings when obvious)

∀v∈H 1
0 (�)

2; a(u; v) + b(v; p)= 〈f ; v〉
∀q∈L20(�); b(u; q)=0

(24)

Let also s be a �xed real number, 0¡s¡ 1
2 . It can be noted from the standard regularity

properties of the Stokes problem that the operator S maps Hs−1(�)2 into Hs+1(�)2. Next,
we consider the mapping � which associates with any u in Hs+1(�)2 the solution z=�(u)
in L2(�) of the problem

�z + �u · ∇z= � curl f + � curl u in � (25)

Indeed it follows from Reference [13, Section 3] that this equation has a unique solution
z in L2(�), which moreover belongs to the space Zu introduced in (10). Now, it can be
observed that a triple (u; p; z) which belongs to Hs+1(�)2 ×Hs(�)×L2(�) is a solution of
problem (4) if and only if the velocity u satis�es

�(u)= u+S(�(u)× u − f)= 0 (26)
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In a preliminary step, we prove some properties of the mapping �. This requires the
introduction of the segment

I�(u)= {u − �(u − u�); 06 �6 1} (27)

where both functions u and u� are assumed to belong to V (�)∩L∞(�)2.

Lemma 3.6
If �(I�(u)) is contained in H 1(�), then the mapping � is local Lipschitz-continuous at each
function on I�(u) with values in L2(�).

Proof
For any functions ũ and ũ∗ in I�(u), we set z̃=�(ũ) and z̃∗=�(ũ∗). From the de�nition of
�, we have for all t in L2(�),

c(z̃∗ − z̃; t) + C(ũ∗; z̃∗; t)− C(ũ; z̃; t)= �
∫
�
curl(ũ∗ − ũ)t dx

or equivalently

c(z̃∗ − z̃; t)= �
∫
�
curl(ũ∗ − ũ)t dx − C(ũ∗ − ũ; z̃; t)− C(ũ∗; z̃∗ − z̃; t)

Taking t equal to z̃∗ − z̃ yields

‖z̃∗ − z̃‖2L2(�)6 c(|ũ∗ − ũ|H 1(�)2 + ‖ũ∗ − ũ‖L∞(�)2 |z̃|H 1(�))‖z̃∗ − z̃‖L2(�)

whence we derive

‖z̃∗ − z̃‖L2(�)6 c(1 + |z̃|H 1(�))‖ũ∗ − ũ‖H 1(�)2 ∩ L∞(�)2

So the mapping � is Lipschitz-continuous in ũ with a Lipschitz constant only depending on
‖�(ũ)‖H 1(�).

Lemma 3.7
If �(I�(u)) is contained in a bounded set of H 1(�), then the mapping � is di�erentiable in
the direction u − u� at each point of I�(u). Moreover, if the following assumptions hold:

(i) The velocities u and u� belong to H 2(�)2 ∩W 1;∞(�)2,
(ii) The mapping D�(u):(u − u�) satis�es for a positive constant c0

‖D�(u):(u − u�)‖H 1(�)6 c0‖u − u�‖H 2(�)2 ∩ W 1; ∞(�)2 (28)

(iii) The mapping � is Lipschitz-continuous in u with values in H 1(�),

then the mapping: ũ 	→ D�(ũ):(u − u�) is Lipschitz-continuous on I�(u), more precisely it
satis�es, for any ũ in I�(u),

‖D�(ũ):(u − u�)− D�(u):(u − u�)‖L2(�)6c‖ũ − u‖H 1(�)2 ∩ L∞(�)2‖u − u�‖H 2(�)2 ∩ W 1; ∞(�)2

(29)
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Proof
We check separately the two assertions.

(1) For any function ũ in I�(u), we now set ũ∗= ũ+ �(u− u�); z̃=�(ũ) and z̃∗=�(ũ∗),
for any �;−1¡�¡1, such that ũ∗ belongs to I�(u). As in the previous proof, we
observe that, for all t in L2(�),

c(z̃∗ − z̃; t) + C(ũ∗; z̃∗; t)− C(ũ; z̃; t)= ��
∫
�
curl(u − u�)t dx

or equivalently that

c
(
z̃∗ − z̃

�
; t
)
+ C

(
ũ;

z̃∗ − z̃
�

; t
)
+ C(u − u�; z̃∗; t)= �

∫
�
curl(u − u�)t dx

Thus taking t equal to (z̃∗ − z̃)=� and noting that z̃∗ belongs to a bounded set of H 1(�)
yield that the quantities, ��=(z̃∗ − z̃)=� are bounded independently of � in L2(�). So
there exists a sequence (�n)n tending to zero such that (��n)n converges to a function
�̃ weakly in L2(�). We also derive that, for any t in D(�),

lim
n→+∞ C(ũ; ��n ; t)= − lim

n→+∞ C(ũ; t; ��n)= − C(ũ; t; �̃)= �〈ũ · ∇�̃; t〉

the last product being taken in the distributional sense. Combining all this implies that
�̃=D�(ũ):(u − u�) is independent of the sequence (�n)n, belongs to the space Zũ and
is the unique solution of the equation

∀t ∈L2(�); c(�̃; t) + C(ũ; �̃; t) + C(u − u�; z̃; t)= �
∫
�
curl(u − u�)t dx (30)

(2) Let � denote the solution of (30) for ũ= u (and z̃=�(u)). We have, for all t in
L2(�),

c(�̃ − �; t)= − C(ũ − u; �; t)− C(ũ; �̃ − �; t)− C(u − u�; z̃ − z; t)

Thus, taking t equal to �̃ − � and using the following estimates:

|C(ũ − u; �; �̃ − �)|6 |�|‖ũ − u‖L∞(�)2 |�|H 1(�)‖�̃ − �‖L2(�)

|C(u − u�; z̃ − z; �̃ − �)|6 |�|‖u − u�‖L∞(�)2 |z̃ − z|H 1(�)‖�̃ − �‖L2(�)

yield that

‖�̃ − �‖L2(�)6 c(‖ũ − u‖L∞(�)2 |�|H 1(�) + ‖u − u�‖L∞(�)2 |z̃ − z|H 1(�))

Using assumptions (ii) and (iii) to bound the two terms in the right-hand side leads to the
desired property.

Remark 3.8
The assumptions of Lemmas 3.6 and 3.7 hold in the case �=0 of the Navier–Stokes equations
whenever � is convex. They require some further regularity of the solution in the case � �= 0
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(for instance the derivative of order 2 of �(u) in the direction u− u� must belong to L2(�)).
However they seem less restrictive than condition (14).

The same arguments as for the proof of Lemma 3.7 imply that the function � is Gâteaux–
di�erentiable at u on Hs(�)2; s¿1. Indeed, for each w in Hs(�)2, the function �=D�(u):w
is the unique solution in L2(�) of the problem

�+ u · ∇�+ w · ∇�(u)= � curlw in � (31)

So we are in a position to state the next proposition. The idea for its proof is due to Pousin
and Rappaz, see Reference [28, Theorem 3] and also Reference [16, Proposition 2.1] for a
modi�ed version. However the assumptions which are made in both references are not satis�ed
in the present situation, so we prove the desired result directly.

Proposition 3.9
Let U =(u; z) be a solution of problem (8) in (H 2(�)2 ∩W 1;∞(�)2)×H 1(�) such that the
operator

D�(u)=I+SD(�(u)× u) (32)

is an automorphism of Hs+1(�)2 for a real number s; 0¡s¡ 1
2 , and that the mapping � is

Lipschitz-continuous in u with values in H 1(�). There exist a neighbourhood U of U in
(H 2(�)2 ∩W 1;∞(�)2)×H 1(�) and a constant c(U ) only depending on U and s such that
any solution U�=(u�; z�) of problem (17) in U such that

(i) �(I�(u)) is contained in a bounded set of H 1(�),
(ii) inequality (28) holds for the mapping D�(u):(u − u�),
satis�es

‖u − u�‖Hs+1(�)26 c(U )�‖�z�‖L2(�) (33)

Proof
We de�ne the function � from [0,1] into Hs+1(�)2 by

�(�)=�(u − �(u − u�)); 06 �6 1

It follows from Lemma 3.7 that this function is continuously di�erentiable on [0,1]. So we
have

�(u�)=�(u�)− �(u)= �(1)− �(0)=
∫ 1

0
�′(�) d�= �′(0) +

∫ 1

0
(�′(�)− �′(0)) d�

We note that �′(0) is equal to −D�(u):(u−u�) and observe from Lemmas 3.6 and 3.7 that �′

is Lipschitz-continuous in 0. So denoting by 	 the norm of the inverse of D�(u) and choosing
U such that (see (29))

‖�′(�)− �′(0)‖Hs+1(�)26
�
2	

‖u − u�‖Hs+1(�)2

yield the existence of a constant c0(U ) such that

‖u − u�‖Hs+1(�)26 c′
0(U )‖�(u�)‖Hs+1(�)2
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In order to estimate the residual ‖�(u�)‖Hs+1(�)2 , we note that

�(u�)= − S((�� −�)(u�)× u�)

where ��(u�) denotes the part z� of the solution U�. Setting z̃�=�(u�), we have

�(z� − z̃�) + �u� · ∇(z� − z̃�)= ��z�

Multiplying this equation by z� − z̃� yields that

‖z� − z̃�‖L2(�)6 �
�‖�z�‖L2(�)

and combining this with (19) and the standard properties of S gives estimate (33).

Of course, an estimate of the errors p−p� and z − z� can be derived from (33) in a usual
way.

Corollary 3.10
If the assumption of Proposition 3.9 holds, there exists a constant c′(U ) only depending on
U such that any solution (u�; p�; z�) of problem (16) with (u�; z�) in U satis�es

‖p − p�‖L2(�) + ‖z − z�‖L2(�)6 c′(U )�‖�z�‖L2(�) (34)

Proof
We �rst prove the estimate for ‖z − z�‖L2(�). Indeed, we have

�z + �u · ∇z= � curl f + � curl u; �z� + �u� · ∇z�= � curl f + � curl u� + ��z�

Subtracting the second equation from the �rst one, multiplying by z − z� and using the same
arguments as in the proof of Proposition 3.6 give

�‖z − z�‖L2(�)6 c(1 + ‖z‖H 1(�))‖u − u�‖Hs+1(�)2 + �‖�z�‖L2(�)

so that the desired estimate follows from (33). The estimate for p − p� is then derived from
this estimate and (33), combined with the inf–sup condition (9).

Remark 3.11
Note that, in the assumption of Proposition 3.9 and in all the previous estimates, the space
Hs+1(�) can be replaced by H 1(�)∩L∞(�).

Remark 3.12
It is readily checked that, if (un; pn; zn)n denotes the sequence exhibited in Theorem 3.5, then

lim inf
n→+∞ �n‖�zn‖L2(�) = 0 (35)

Note to conclude that the main assumption of Proposition 3.9, i.e. the fact that D�(u)
is an automorphism of Hs+1(�)2, can equivalently be expressed as follows: For any data g
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in Hs−1(�)2, the following problem

∀v∈H 1
0 (�)

2; a(w; v) + b(v; 
) + A(z;w; v) + A(r; u; v)= 〈g; v〉
∀q∈L20(�); b(w; q)=0

∀t ∈L2(�); c(r; t) + C(u; r; t) + C(w; z; t)= �
∫
�
(curlw)t dx

has a unique solution (w; 
; r) in (H 1
0 (�)∩Hs+1(�))2 × L20(�)×L2(�)

This assumption seems less restrictive than the uniqueness condition, see Remark 2.3.

4. THE CONFORMING DISCRETE PROBLEM

From now on, we work with a �xed, positive value of �, and we describe a conforming
�nite element discretization of problem (16) which is obtained by the Galerkin method. For
simplicity we assume that the domain � is a polygon. We introduce a regular family (Th)h
of triangulations by closed triangles, in the usual sense that

• for each h; 	� is the union of all elements of Th,
• for each h, the intersection of two di�erent elements of Th, if not empty, is a corner or
a whole edge of both of them,

• the ratio of the diameter hK of an element K in Th to the diameter of its inscribed circle
is bounded by a constant � independent of K and h.

As standard, h denotes the maximum of the diameters of the elements of Th. For any K in
Th, we denote by nK the unit outward normal vector to K on @K . In all that follows, c stands
for a generic constant independent of h and � but possibly depending on the parameters �
and �.
In order to describe the discretization, we �rst present the conforming approximation of the

Stokes operator S de�ned by problem (24). The discrete space of pressures is de�ned by

Mh= {qh ∈L20(�); ∀K ∈Th; qh|K ∈P0(K)} (36)

where P0(K) denotes the space of constant functions on K . As far as the discrete space of
velocities is concerned, two choices are considered:

Xh= {vh ∈H 1
0 (�)

2; ∀K ∈Th; vh|K ∈P(K)} (37)

where P(K) is either

• the space P2(K)2 of restrictions to K of polynomials with degree 6 2,
• the space spanned by the subspace P1(K)2 of a�ne vector �elds on K and the three
functions  e associated with the three edges e of K , equal to the normal vector nK on e
times the product of the two barycentric coordinates associated with the endpoints of e
(the corresponding �nite element is studied in Reference [29]).

Next, we introduce the discrete Stokes operator Sh which, with any data f in H−1(�)2,
associates the velocity uh of the solution (uh; ph) in Xh ×Mh of the system

∀vh ∈Xh; a(uh; vh) + b(vh; ph)= 〈f ; vh〉
∀qh ∈Mh; b(uh; qh)=0

(38)
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Indeed, the following inf–sup condition is proven in Reference [20, Chapter II, Section 2]
(see also Reference [29, Lemma II.4]): There exists a positive constant � independent of h
such that

∀qh ∈Mh; sup
vh∈Xh

b(vh; qh)
|vh|H 1(�)2

¿�‖qh‖L2(�) (39)

so that problem (38) has a unique solution.
We also recall from Reference [20, Chapter II, Section 2] two results concerning the oper-

ator Sh:

(i) The following stability property holds

‖Shf‖H 1(�)26 c‖f‖H−1(�)2 (40)

(ii) If the data f belongs to Hs−1(�)2 and the solution Sf belongs to Hs+1(�)2, 0¡s61,
the following error estimate holds:

‖(S − Sh)f‖H 1(�)26chs(‖f‖Hs−1(�)2 + ‖Sf‖Hs+1(�)2) (41)

Similarly, we introduce the space

Zh= {th ∈H 1(�); ∀K ∈Th; th|K ∈P1(K)} (42)

where P1(K) stands for the space of restrictions to K of a�ne functions on R2. Let L� denote
the �-dependent Laplace operator which associates with any data g in H 1(�)′ the solution z
in H 1(�) of the problem

∀t ∈H 1(�); c�(z; t)= 〈g; t〉 (43)

The approximation L�h of this operator is de�ned as follows: For any data g in H 1(�)′, the
function zh=L�hg belongs to Zh and satis�es

∀th ∈Zh; c�(zh; th)= 〈g; th〉 (44)

For completeness we recall two results which are completely standard for �=1.

(i) The following stability properties hold:

‖L�hg‖�6c�−1=2‖g‖H 1(�)′ ; ‖L�hg‖�6c‖g‖L2(�) (45)

(ii) If the solution L�g belongs to Hs+1(�), 0¡s61, the following error estimate holds:

‖(L� − L�h)g‖�6chs(h+ �1=2)‖L�g‖Hs+1(�) (46)

The discrete problem associated with problem (16) now reads:

Find (u�h; p�h; z�h) in Xh ×Mh ×Zh such that

∀vh ∈Xh; a(u�h; vh) + b(vh; p�h) + A(z�h; u�h; vh)=
∫
�
f · vh dx

∀qh ∈Mh; b(u�h; qh)=0

∀th ∈Zh; c�(z�h; th) + C(u�h; z�h; th) =
∫
�
(curl f)th dx+ �

∫
�
(curl u�h)th dx

(47)
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It is readily checked that, for a �xed z�h in Zh, the �rst two lines in (47) have a unique
solution (u�h; p�h) and that the velocity u�h belongs to

Vh= {vh ∈Xh; ∀qh ∈Mh; b(vh; qh)=0} (48)

However the study of the fully coupled problem (47) is more complex and requires a
di�erent formulation. Indeed, the analysis of this problem relies on the theorem due to
Brezzi, Rappaz and Raviart [30] (see also Reference [31, Theorem 3.1] or
Reference [20, Chapter IV, Theorem 3.1]). To apply it, we �rst introduce a new formu-
lation of problem (17), which makes use of the operator S and L�. We also de�ne the
mapping F from H 1

0 (�)
2 ×L2(�) into H−1(�)2 by

∀U =(u; z)∈H 1
0 (�)

2 ×L2(�); ∀v∈H 1
0 (�)

2; 〈F(U ); v〉=A(z; u; v)−
∫
�
f · v dx (49)

and the mapping G from Hs(�)2 ×H 1(�), 1¡s¡ 3
2 , into L2(�) by

∀U =(u; z)∈Hs(�)2 ×H 1(�); ∀t ∈L2(�);

〈G(U ); t〉=C(u; z; t)− �
∫
�
(curl f)t dx − �

∫
�
(curl u)t dx (50)

We de�ne the space Y� as the product H 1
0 (�)

2 ×H 1(�), equipped with the norm

‖V‖Y� =(|v|2H 1(�)2 + ‖t‖2� )1=2 with V =(v; t) (51)

With these notations, it is readily checked that the pair U�=(u�; z�) is a solution of problem
(17) if and only if it belongs to Y� and satis�es

H�(U�)=U� +

(
S 0

0 L�

)(
F(U�)

G(U�)

)
=0 (52)

Similarly, the pair U�h=(u�h; z�h) is the part of a solution (u�h; p�h; z�h) of problem (47) if and
only if it belongs to the discrete space Yh=Xh ×Zh and satis�es

H�h(U�h)=U�h +

(
Sh 0

0 L�h

)(
F(U�h)

G(U�h)

)
=0 (53)

We now prove some properties of the previous mappings.

Lemma 4.1
Let U� be a solution of problem (52) in Y� such that the operator

G�(U�)=I+

(
S 0

0 L�

)(
DF(U�)

DG(U�)

)
(54)
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is an automorphism of Y�, and let 	� denote the norm of its inverse. Then, there exists an
h0¿0 only depending on � and 	� such that, for all h6h0, the operator

G�h(U�)=I+

(
Sh 0

0 L�h

)(
DF(U�)

DG(U�)

)
(55)

is an automorphism of Y� with the norm of its inverse smaller than 2	�.

Proof
Thanks to the formula

G�h(U�)=G�(U�)

(
I − G−1

� (U�)

(
S − Sh 0

0 L� − L�h

)(
DF(U�)

DG(U�)

))

it su�ces to check that the norm of the operator(
S − Sh 0

0 L� − L�h

)(
DF(U�)

DG(U�)

)

in the space L(Y�) of linear mappings from Y� into itself tends to 0 when h tends to zero.
This follows from (41) and (46) combined with the compactness of DF(U�) from Y� into
H−1(�)2 and of DG(U�) from Y� into H 1(�)′, both being a consequence of the compactness
of the imbedding of H 1(�) into L4(�).

Lemma 4.2
There exists a constant � independent of � such that the following Lipschitz property holds
for any solution U� of problem (52) in Y� and any Ũ in Y� such that ‖U� − Ũ‖Y�6�:

‖G�h(Ũ )− G�h(U�)‖L(Y�)6��−1=2| log �|1=2�: (56)

Proof
We prove the Lipschitz property successively for the two lines of K�h.

(1) By combining the stability property (40) and the fact that the mapping Ũ 	→ DF(Ũ )
is linear, we easily derive with obvious notation

‖Sh(DF(Ũ )− DF(U�))‖L(Y� ;H 1
0 (�)

2)6c(|ũ − u�|H 1(�)2 + ‖z̃ − z�‖L2(�))

(2) Here we have, for W =(w; r),

∀t ∈H 1(�); 〈DG(Ũ ):W; t〉=C(w; z̃; t) + C(ũ; r; t)− �
∫
�
(curlw)t dx

whence

∀t ∈H 1(�); 〈(DG(Ũ )− DG(U�)):W; t〉=C(w; z̃ − z�; t) + C(ũ − u�; r; t)

Using once more the fact [27] that the norm of the imbedding of H 1(�) into Lp(�)
is smaller than cp1=2 and de�ning p′ such that 1=p+ 1=p′= 1

2 , we have

|C(w; z̃ − z�; t)|6cp1=2|w|H 1
0 (�)

2�−1=2‖z̃ − z�‖�‖t‖Lp′(�)
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Assuming without restriction that p is ¿4 and noting that the norm of the imbedding
of Hs(�) with s= 2

p into Lp′
(�) is bounded independently of p (this follows by an

interpolation argument), we obtain

|C(w; z̃ − z�; t)|6cp1=2|w|H 1
0 (�)

2�−1=2‖z̃ − z�‖�‖t‖Hs(�)

and a similar bound holds for the term C(ũ−u�; r; t). On the other hand, it can be noted
that, since s is ¡ 1

2 , the spaces H
s(�) and Hs

0(�) coincide. So, an interpolation argument
relying on Reference [32, Chapitre I, Th�eor�eme 6.2] between the two inequalities in (45)
leads to

‖L�hg‖�6c�−s=2‖g‖H−s(�)

Combining all this yields

‖L�h(DG(Ũ )−DG(U�)):W‖�6cp1=2�−1=2−1=p (|w|H 1
0 (�)

2‖z̃ − z�‖� + |ũ − u�|H 1
0 (�)

2‖r‖�)

We conclude the proof by taking p= c| log �|.
Lemma 4.3
For any data f in H (curl;�), let U� be a solution of problem (52) in Hs+1(�)2 ×Hs+1(�),
0¡s61. The following estimate holds for a constant c(U�; f) only depending on the norms
of U� and f in these spaces

‖H�h(U�)‖Y�6c(U�; f)hs (57)

Proof
This follows from the formula

H�h(U�)= −
(
S − Sh 0

0 L� − L�h

)(
F(U�)

G(U�)

)

together with (41) and (46).

Remark 4.4
A more precise application of (41) and (46), combined with Lemma 3.1 leads to the improved
(but less simple) estimate

‖H�h(U�)‖Y�6chs‖u�‖Hs+1(�)2(1 + ‖f‖H (curl;�)) + c′hs(h+ �1=2)‖z�‖Hs+1(�) (58)

We are now in a position to state and prove the main result of this section.

Theorem 4.5
For any data f in H (curl;�), let (u�; p�; z�) be a solution of problem (16) such that the pair
U�=(u�; z�) belongs to Hs+1(�)2 ×Hs+1(�), 0¡s61 and the operator K�(U�) de�ned in (54)
is an automorphism of Y�. Then, there exist two positive constants h∗

0 and � only depending
on � and the constant 	� de�ned in Lemma 4.1 such that, for all h6h∗

0 , problem (47) has a
unique solution (u�h; p�h; z�h) satisfying

‖U� − U�h‖Y�6� with U�h=(u�h; z�h) (59)
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Moreover, the following a priori error estimate holds for a constant c(U�; f) only depending
on the norms of U� and f in the previous spaces

|u� − u�h|H 1(�)2 + ‖p� − p�h‖L2(�) + ‖z� − z�h‖�6c(U�; f)hs (60)

Proof
Since the assumptions of the Brezzi–Rappaz–Raviart theorem [30] can be derived from
Lemmas 4.1–4.3, applying this theorem yields the existence and uniqueness of a solution
U�h of problem (53) satisfying (59), together with the error estimate for ‖U� − U�h‖Y� . The
existence of a discrete pressure p�h and the estimate for ‖p� − p�h‖L2(�) are then an obvious
consequence of the inf–sup condition (39).
We note that the constant � in (59) must only satisfy, for a constant c depending on the

geometry of � and the regularity parameter �,

4	��−1=2| log �|1=2�¡c (61)

This upper bound limits �, but the limitation is completely independent of h. The estimate
(60) is optimal. Moreover, by replacing its right-hand side by that of (58) and combining
this with (22), we obtain the following result.

Corollary 4.6
If the assumptions of Theorem 4.5 are satis�ed, the following a priori error estimate holds
for a constant c(f) only depending on the norm of f in H (curl;�) and for the values of s
indicated in Proposition 3.4:

|u� − u�h|H 1(�)2 + ‖p� − p�h‖L2(�) + ‖z� − z�h‖�6c(f)hs(1 + h�−s−1=2 + �−s) (62)

As a consequence and in the case of a convex domain for instance, taking h of the same
order as �3=2 leads to a convergence of order �1=2 or h1=3.

5. A POSTERIORI ANALYSIS

Since a non-discrete intermediate problem, namely problem (16), is introduced between the
continuous problem (4) and the discrete problem (47), the a posteriori analysis relies on the
ideas presented in Reference [33] in a similar case. More precisely, we consider two types
of error indicators: One is linked to the regularization step and the other ones, which are
linked to the �nite element discretization, are the sum of two parts which correspond to the
equation on (u; p) and z, respectively. Indeed the aim of this is to optimize the choice of
the parameter � when working with adaptive meshes. We separately introduce the two types
of error indicators and prove upper and lower bounds for each of them. We conclude with a
global a posteriori error estimate.
From now on, we �x an approximation fh of the data f in the space associated with the

Raviart–Thomas �nite element [34]

Th= {kh ∈H (curl;�); ∀K ∈Th;kh|K ∈PRT (K)} (63)

where PRT (K) stands for the space of restrictions to K of polynomials of the form a+ b×x
(here x is the vector with components x and y).
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5.1. A posteriori estimate of the regularization error

The error indicator �� is de�ned by

��= ‖� curl fh + � curl u�h − �z�h − �u�h · ∇z�h‖L2(�) (64)

It only deals with the residual of the equation on z and is global on the whole domain �.
Note that it is very easy to compute once the discrete solution is known since the norm in
L2(�) which appears in its de�nition is the Hilbertian sum of norms in L2(K) of quantities
which are quadratic on K .
The a posteriori error estimate is simply derived by combining (33) and (34) with a triangle

inequality. From now on, we denote by hmin the smallest diameter of the triangles K in Th.

Proposition 5.1
If the assumptions of Proposition 3.9 and Theorem 4.5 hold, there exists a constant c1(U )
only depending on U and s and a constant c2(f) only depending on the data f such that

‖u − u�‖(H 1(�)∩ L∞(�))2 + ‖p − p�‖L2(�) + ‖z − z�‖L2(�)

6 c1(U )(�� + c2(f)�−1=2(| log hmin|1=2‖u� − u�h‖H 1(�)2 + ‖z� − z�h‖�)

+‖curl(f − fh)‖L2(�)) (65)

where (u�h; p�h; z�h) denotes the unique solution of problem (47) satisfying (59).

Proof
Thanks to (33) and (34), the term in the left-hand side of (65) is smaller than
(C(U ) + C ′(U ))�‖�z�‖L2(�). To bound this last quantity, we �rst observe from (15) that

�‖�z�‖L2(�) = ‖� curl f + � curl u� − �z� − �u� · ∇z�‖L2(�)

whence

�‖�z�‖L2(�)6 �� + |�|‖curl(f − fh)‖L2(�) + �‖curl(u� − u�h)‖L2(�)

+�‖z� − z�h‖L2(�) + |�|‖u� · ∇z� − u�h · ∇z�h‖L2(�)

To estimate the nonlinear term, we use the further triangle inequality, for any p¿2 and with
1=p+ 1=p′= 1

2 ,

‖u� · ∇z� − u�h · ∇z�h‖L2(�)6 ‖u�‖L∞(�)2‖∇(z� − z�h)‖L2(�)2 + ‖∇z�h‖Lp′ (�)2‖u� − u�h‖Lp(�)2

We use a further inverse inequality for ‖∇z�h‖Lp′ (�)2 , note that ‖∇z�h‖L2(�)2 is bounded from
(57). Thus, since the norm of the embedding of H 1(�) into Lp(�) behaves like p1=2, taking
p= | log hmin| gives the desired result.
The proof of the converse estimate relies on exactly the same triangle inequalities as pre-

viously, so we present it in an abridged way.
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Proposition 5.2
If the assumptions of Proposition 3.9 and Theorem 4.5 hold, there exists a constant c3(U )
only depending on U such that

��6 c3(U )(�−1=2(‖u − u�‖(H 1(�)∩ L∞(�))2 + ‖z − z�‖�

+| log hmin|1=2‖u� − u�h‖H 1(�)2 + ‖z� − z�h‖�) + ‖curl(f − fh)‖L2(�)) (66)

where (u�h; p�h; z�h) denotes the unique solution of problem (47) satisfying (59).

Proof
The arguments used in the proof of Proposition 5.1 yield that

��6 ‖� curl f + � curl u� − �z� − �u� · ∇z�‖L2(�)

+ c2(f)�−1=2(| log hmin|1=2‖u� − u�h‖H 1(�)2 + ‖z� − z�h‖�)

+‖curl(f − fh)‖L2(�)

Next, replacing � curl f by −� curl u+ �z + �u · ∇z gives

‖� curl f + � curl u� − �z� − �u� · ∇z�‖L2(�)

6 c(‖u − u�‖H 1(�)2 + ‖z − z�‖L2(�) + ‖u · ∇z − u� · ∇z�‖L2(�))

Using the next inequality to bound the nonlinear term

‖u · ∇z − u� · ∇z�‖L2(�)6 ‖u‖L∞(�)2‖∇(z − z�)‖L2(�)2 + ‖∇z�‖L2(�)2‖u − u�‖L∞(�)2

leads to the desired estimate.

5.2. A posteriori estimate of the �nite element error

We �rst introduce some notation: For any K in Th, we denote by hK the diameter of K , by
EK the set of the three edges of K and by E0K the subset of EK consisting of all edges that
are not contained in @�. For each element e of EK , he stands for the length of e and, for any
function v, the quantity [v]e denotes the trace of v on e if e is contained in @�, the jump of
v through e otherwise (making the sign precise is irrelevant in what follows).
With each K in Th, we associate two error indicators, related to the residuals of the

equations on (u; p) and z, respectively:

• Error indicators linked to (u; p).
These indicators are of standard residual type, see Reference [16, Section 2.1]. For each
K in Th, the indicator �K] is de�ned by

�K] = hK‖fh + ��u�h − z�h × u�h‖L2(K)2

+
∑

e∈E0K

h1=2e ‖[�@nKu�h − p�hnK ]e‖L2(e)2 + ‖div u�h‖L2(K) (67)
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Note that the two lines in this de�nition correspond to the residuals of the �rst two lines
in problem (2) since gradp�h is zero on each triangle.

• Error indicators linked to z.
These indicators are rather similar to those introduced in Reference [18] for an uncoupled
convection–di�usion equation. For each K in Th, the indicator �K[ is de�ned by

�K[ = �−1=2hK‖� curl fh + � curl u�h − �z�h − �u�h · ∇z�h‖L2(K)

+�1=2
∑

e∈EK

h1=2e ‖[@nK z�h]e‖L2(e) (68)

To prove the a posteriori error estimate, we need a formulation of (16) which is slightly
di�erent from that introduced in Section 4; see (52). Indeed, let S∗ denote the generalized
Stokes operator which, with any data (f ; ‘) in H−1(�)2 ×L20(�), associates the solution (u; p)
in H 1

0 (�)
2 ×L20(�) of the equations

∀v∈H 1
0 (�)

2; a(u; v) + b(v; p)= 〈f ; v〉
∀q∈L20(�); b(u; q)= 〈‘; q〉

(69)

We also de�ne the space Y∗
� as the product H 1

0 (�)
2 ×L20(�)×H 1(�) and we observe that

a triple U ∗
� =(u�; p�; z�) is a solution to problem (16) if and only if it belongs to Y∗

� and
satis�es (with obvious notation for U�)

H∗
� (U

∗
� )=U ∗

� +

(
S∗ 0

0 L�

)⎛⎜⎜⎝
F(U�)

0

G(U�)

⎞
⎟⎟⎠ =0 (70)

where F and G are de�ned in (49) and (50), respectively. Similarly, any U ∗
�h=(u�h; p�h;

z�h) which is a solution to problem (47) satis�es

H∗
� (U

∗
�h)=

(
S∗ 0

0 L�

)⎛⎜⎜⎝
R1(U ∗

�h)

R2(U ∗
�h)

R3(U ∗
�h)

⎞
⎟⎟⎠

where the residuals Ri are de�ned by

∀v∈H 1
0 (�)

2; 〈R1(U ∗
�h); v〉= a(u�h; v) + b(v; p�h) + A(z�h; u�h; v)−

∫
�
f · v dx

∀q∈L2(�); 〈R2(U ∗
�h); q〉= b(u�h; q)

and

∀t ∈H 1(�); 〈R3(U ∗
�h); t〉= c�(z�h; t) + C(u�h; z�h; t)− �

∫
�
(curl f)t dx − �

∫
�
(curl u�h)t dx
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Proposition 5.3
Let U ∗

� =(u�; p�; z�) be a solution of problem (16) in Y∗
� such that the operator DH∗

� (U
∗
� ) is

an automorphism of Y∗
� . There exist a neighbourhood U∗

� of U
∗
� in Y∗

� and a constant c3(U
∗
� )

depending only on U ∗
� such that any solution (u�h; p�h; z�h) of problem (47) which belongs to

U∗
� satis�es

‖u� − u�h‖H 1(�)2 + ‖p� − p�h‖L2(�) + ‖z� − z�h‖�

6 c3(U ∗
� )

( ∑
K∈Th

(�2K] + �2K[ + h2K‖f − fh‖2L2(K)2 + h2K�
−1‖curl(f − fh)‖2L2(K))

)1=2
(71)

Proof
The Lipschitz property of the mapping: Ũ

∗ 	→ DH∗
� (Ũ

∗
) in L(Y∗

� ) can easily be veri�ed
in a neighbourhood of U ∗

� thanks to the same arguments as in Lemma 3.6. Then, applying
Reference [16, Proposition 2.1] leads to the following estimate:

‖U ∗
� − U ∗

�h‖Y∗
�
6 c(U ∗

� )

∥∥∥∥∥∥∥∥
(
S∗ 0

0 L�

)⎛⎜⎜⎝
R1(U ∗

�h)

R2(U ∗
�h)

R3(U ∗
�h)

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥
Y∗

�

Combining this with the stability properties of the operator S∗ and L� gives

‖U ∗
� − U ∗

�h‖Y∗
�
6 c(U ∗

� )(‖R1(U ∗
�h)‖H−1(�)2 + ‖R2(U ∗

�h)‖L2(�) + �−1=2‖R3(U ∗
�h)‖H 1(�)′)

We now bound successively the three residual terms Ri(U ∗
�h).

(1) Noting that, for any v in H 1
0 (�)

2 and vh in Xh,

〈R1(U ∗
�h); v〉= 〈R1(U ∗

�h); v − vh〉
integrating by parts on each K in the right-hand side of this equation and taking vh
equal to the image of v by a Cl�ement type regularization operator (see Reference [20,
Chapter I, Theorem A.4]), we derive

‖R1(U ∗
�h)‖H−1(�)2 6 c

( ∑
K∈Th

(
hK‖f + ��u�h − z�h × u�h‖L2(K)2

+
∑

e∈E0K

h1=2e ‖[�@nKu�h − p�hnK ]e‖L2(e)2

)2)1=2

(2) A Cauchy–Schwarz inequality leads to

‖R2(U ∗
�h)‖L2(�)6 ‖div u�h‖L2(�)
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(3) We note that, for any t in H 1(�) and th in Zh,

〈R3(U ∗
�h); t〉= 〈R3(U ∗

�h); t − th〉
whence, by integration by parts on each K and noting that �z�h is zero on each K ,

〈R3(U ∗
�h); t〉6

∑
K∈Th

(
‖� curl f + � curl u�h − �z�h − �u�h · ∇z�h‖L2(K)‖t − th‖L2(K)

+ �
∑

e∈EK

‖[@nK z�h]e‖L2(e)‖t − th‖L2(e)

)

Also, taking th equal to the image of t by a regularization operator yields

‖R3(U ∗
�h)‖H 1(�)′ 6 c

( ∑
K∈Th

(h2K‖� curl f + � curl u�h − �z�h − �u�h · ∇z�h‖2L2(�)

+ �
∑

e∈EK

he‖[@nK z�h]e‖2L2(e))
)1=2

We conclude by combining all these estimates and using a triangle inequality for the terms
involving the data f .

Remark 5.4
It is readily checked from the inf–sup condition (9) that, for any solution U ∗

� =(u�; p�; z�)
of problem (16) in Y∗

� , the pair U�=(u�; z�) is a solution of problem (52) and moreover
that the operator DH∗

� (U
∗
� ) is an automorphism of Y∗

� if and only if G�(U�)=DH�(U�) is
an automorphism of Y�. So the assumptions of Theorem 4.5 and Proposition 5.3 are fully
equivalent.

We now prove upper bounds on the indicators �K] and �K[. The �rst estimate relies on the
residual equations

∀v∈H 1
0 (�)

2;

a(u� − u�h; v) + b(v; p� − p�h) + A(z�; u�; v)− A(z�h; u�h; v)

=
∑

K∈Th

(∫
K
(f + ��u�h − z�h × u�h) · v dx+ 1

2
∑

e∈E0K

∫
e
[�@nKu�h − p�hnK ]e · v d�

)
(72)

and

∀q∈L2(�); b(u� − u�h; q)=
∫
�
(div u�h)q dx (73)
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Since the proof of the next proposition is completely standard, see Reference [16, Chapter 3],
we only recall the main arguments. Let !K denote the union of elements of Th that share at
least an edge with K .

Proposition 5.5
There exists a constant c4(f) only depending on the data f such that the following estimate
holds for each indicator �K], K ∈Th:

�K] 6 c4(f)(‖u� − u�h‖H 1(!K )2 + ‖p� − p�h‖L2(!K ) + ‖z� − z�h‖L2(!K ) + hK‖f − fh‖L2(!K )2) (74)

Proof
The estimate is derived from two successive choices of the function v in (72) and one choice
of the function q in (73).

(1) We �rst take v in (72) equal to

vK =

{
(fh + ��u�h − z�h × u�h) K on K

0 elsewhere

where  K denotes the bubble function on K (equal for instance to the product of the three
barycentric coordinates on K). This gives (the norm of the embedding of H 1

0 (K) into L4(K)
is evaluated by switching to a reference triangle)

‖(fh + ��u�h − z�h × u�h) 1=2K ‖2L2(K)2 6 c(‖u� − u�h‖H 1(K)2 + ‖p� − p�h‖L2(K)

+h1=2K ‖u� × z� − u�h × z�h‖L4=3(K)2)|vK |H 1(K)2

+‖f − fh‖L2(K)2‖vK‖L2(K)2

Since w= fh + ��u�h − z�h × u�h is a polynomial of degree 6 3 on K , we have the standard
direct and inverse inequalities

‖vK‖L2(K)26 ‖w‖L2(K)26 c‖w 1=2K ‖L2(K)2 and |vK |H 1(K)26 ch−1
K ‖vK‖L2(K)2

These give

‖fh + ��u�h − z�h × u�h‖L2(K)2 6 ch−1
K (‖u� − u�h‖H 1(K)2 + ‖p� − p�h‖L2(K)

+ ch1=2K ‖u� × z� − u�h × z�h‖L4=3(K)2) + ‖f − fh‖L2(K)2

To evaluate the nonlinear term, we apply the triangle inequality

‖u� × z� − u�h × z�h‖L4=3(K)26 ‖u�‖L4(K)2‖z� − z�h‖L2(K) + ‖u� − u�h‖L4(K)2‖z�h‖L2(K)

Now, using the fact that the norm of the embedding of H 1(K) into L4(K) behaves like ch−1=2
K

together with the stability properties (19) and (59), we derive

‖u� × z� − u�h × z�h‖L4=3(K)26 c(f)h−1=2
K (‖z� − z�h‖L2(K) + ‖u� − u�h‖H 1(K)2)
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Combining all these and multiplying by hK gives

hK‖fh + ��u�h − z�h × u�h‖L2(K)2

6 c(f)(‖u� − u�h‖H 1(K)2 + ‖p� − p�h‖L2(K) + ‖z� − z�h‖L2(K) + hK‖f − fh‖L2(K)2) (75)

(2) Let e be an edge in E0K , and let K
′ denote the other triangle of Th that contains e. The

idea here is to choose v in (72) equal to

ve=

⎧⎪⎪⎨
⎪⎪⎩
Re;K([�@nKu�h − p�hnK ]e e) on K

Re;K′([�@nKu�h − p�hnK ]e e) on K ′

0 elsewhere

where  e is now the bubble function on e and Re;K and Re;K′ are lifting operators, constructed
by a�ne transformation from a �xed lifting operator that, for a reference triangle K̂ with edge
ê, maps polynomials in H 1

0 (ê) into polynomials in H 1(K̂) which vanish on @K̂\ê. Thus, we
have

‖[�@nKu�h − p�hnK ]e 1=2e ‖2L2(e)2
6 c(‖u� − u�h‖H 1(K∪K′)2 + ‖p� − p�h‖L2(K∪K′)

+ c′h1=2K ‖u� × z� − u�h × z�h‖L4=3(K∪K′)2)|ve|H 1(K∪K′)2

+ (‖f − fh‖L2(K∪K′)2 + ‖fh + ��u�h − z�h × u�h‖L2(K∪K′)2)‖ve‖L2(K∪K′)2

Using the same direct and inverse inequalities as previously, together with the stability prop-
erties valid for any polynomial w in H 1

0 (K)

‖Re;Kw‖L2(K) + hK |Re;Kw|H 1(K)6 ch1=2e ‖w‖L2(e)

and their analogues on K ′, we obtain

‖[�@nKu�h − p�hnK ]e‖2L2(e)2 6 c(h−1=2
e (‖u� − u�h‖H 1(K∪K′)2

+‖p� − p�h‖L2(K∪K′) + h1=2K ‖u� × z� − u�h × z�h‖L4=3(K∪K′)2)

+ h1=2e (‖f−fh‖L2(K∪K′)2+‖fh+��u�h−z�h × u�h‖L2(K∪K′)2))‖ve‖L2(e)2

The same arguments as in the �rst part of the proof for evaluating the nonlinear term, com-
bined with (75) then lead to

h1=2e ‖[�@nKu�h − p�hnK ]e‖L2(e)2 6 c(f)(‖u� − u�h‖H 1(K∪K′)2 + ‖p� − p�h‖L2(K∪K′)

+‖z� − z�h‖L2(K∪K′) + hK‖f − fh‖L2(K∪K′)2) (76)
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(3) Finally, taking q in (73) equal to

qK =(div u�h)K

where K denotes the characteristic function of K leads in an obvious way to

‖div u�h‖L2(K)6 c|u� − u�h|H 1(K)2 (77)

Combining estimates (75) to (77) gives (74).

Estimating �K[ relies on the same arguments, now combined with the residual equation

∀t ∈H 1(�); c�(z� − z�h; t) + C(u�; z�; t)− C(u�h; z�h; t)

=
∑

K∈Th

(∫
K
(� curl f + � curl u� − �z�h − �u�h · ∇z�h)t dx+ �

∑
e∈EK

�e

∫
e
[@nK z�h]et d�

)
(78)

where �e is equal to 1 or 1
2 , depending on whether or not e is contained in @�. Let ‖ · ‖�;!

stand for the restriction of the norm ‖ · ‖� to any ! contained in �.

Proposition 5.6
There exists a constant c5(f) only depending on the data f such that the following estimate
holds for each indicator �K[, K ∈Th:

�K[ 6 c5(f)�−1(‖u� − u�h‖H 1(!K )2 + (�+ hK)‖z� − z�h‖�;!K + �1=2hK‖curl(f − fh)‖L2(!K )2) (79)

Proof
With the same notation as in the proof of Proposition 5.5, we now take t in (78) equal to

tK =

{
(� curl fh + � curl u�h − �z�h − �u�h · ∇z�h) K on K

0 elsewhere

Using the same direct and inverse inequalities as previously yields

‖� curl fh + � curl u�h − �z�h − �u�h · ∇z�h‖L2(K)

6 c((1 + �1=2h−1
K )‖z� − z�h‖�;K + ‖u� · ∇z� − u�h · ∇z�h‖L2(K)

+‖curl(u� − u�h)‖L2(K) + ‖curl(f − fh)‖L2(K))

To bound the nonlinear term, we write

‖u� · ∇z� − u�h · ∇z�h‖L2(K)6 ‖u�‖L∞(�)2‖grad(z� − z�h)‖L2(K)2

+‖u� − u�h‖L2(K)2‖grad z�h‖L∞(K)2
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whence, using (22) and an inverse inequality for ‖grad z�h‖L∞(K)2 , we have

‖u� · ∇z� − u�h · ∇z�h‖L2(K)6 c(f)�−1=2(‖z� − z�h‖�;K + h−1
K ‖u� − u�h‖L2(K)2)

Combining all these and multiplying by �−1=2hK leads to

�−1=2hK‖� curl fh + � curl u�h − �z�h − �u�h · ∇z�h‖L2(K)

6 c((1 + �−1hK)‖z� − z�h‖�;K + �−1‖u� − u�h‖H 1(K)2 + �−1=2hK‖curl(f − fh)‖L2(K))

Next, for any edge in E0K which is also an edge of another triangle K ′ of Th, we take t in
(78) equal to

te=

⎧⎪⎪⎨
⎪⎪⎩
Re;K([@nK z�h]e e) on K

Re;K′([@nK z�h]e e) on K ′

0 elsewhere

The same arguments as in the proof of Proposition 5.5, combined with the previous estimate,
lead to the desired result.

Since !K is the union of at most four elements of Th, both estimates (74) and (79) are
local. When comparing them with (71), we see that the �nite element error

Eh= ‖u� − u�h‖H 1(�)2 + ‖p� − p�h‖L2(�) + ‖z� − z�h‖�

is equivalent, up to some terms only involving the data f , to the Hilbertian sum

�h=

( ∑
K∈Th

(�2K] + �2K[)

)1=2
(80)

with one of the equivalence constants only depending on U ∗
� and the other one equal to �−1

times a constant only depending on U ∗
� . So these estimates are fully optimal concerning the

dependence with respect to h, but they are not optimal with respect to � (which is not very
surprising).

5.3. Conclusions

To conclude, let us introduce the complete error

E�h = ‖u − u�‖(H 1(�)∩ L∞(�))2 + ‖p − p�‖L2(�) + ‖z − z�‖L2(�)

+‖u� − u�h‖H 1(�)2 + ‖p� − p�h‖L2(�) + ‖z� − z�h‖� (81)

We deduce from Propositions 5.1 and 5.3 the bound for E�h.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1375–1414



DISCRETIZATIONS OF A GRADE-TWO FLUID MODEL 1405

Corollary 5.7
If the assumptions of Propositions 5.1 and 5.3 hold, there exists a constant c5(U ∗

� ) only
depending on U ∗

� such that

E�h6 c3(U ∗
� )(�

2
� + �−1| log hmin|

× ∑
K∈Th

(�2K] + �2K[ + h2K‖f − fh‖2L2(K)2 + (�+ h2K�
−1)‖curl(f − fh)‖2L2(K)))1=2 (82)

Even though this estimate is not fully optimal when compared with the converse ones,
it provides an explicit bound for the global error, which leads to explicit upper and lower
bounds for the energy norm of the exact solution. Moreover, the error indicators ��, �K] and
�K[ are appropriate tools for optimizing the choice of � when adapting the mesh. A possible
strategy for that is recalled from Reference [33, Section 5] in the next section.

6. NUMERICAL ALGORITHMS AND EXPERIMENTS

The numerical experiments below are realized by using the code FreeFem++, see
Reference [35]. They rely on the discrete problem (47). However, since this problem is
nonlinear, we �rst describe the iterative algorithm that is used for solving it. Next, some
numerical tests are presented, �rst for some analytic solutions in order to validate the code
and check the e�ciency of the error indicators, and then in more realistic situations.

6.1. The algorithm for solving the discrete problem

We start from an initial guess z0 in Zh and, for each n¿ 1, we successively solve the problems
(we have omitted the index �h for simplicity):

Find (un; pn) in Xh ×Mh such that

∀vh ∈Xh; a(un; vh) + b(vh; pn) + A(zn−1; un; vh)=
∫
�
f · vh dx

∀qh ∈Mh; b(un; qh)=0

(83)

Find zn in Zh such that

∀th ∈Zh; c�(zn; th) + C�h(un; zn; th)= �
∫
�
(curl f)th dx+ �

∫
�
(curl un)th dx

(84)

with di�erent approximations of the trilinear form C(·; ·; ·), that we denote by C�h(·; ·; ·). Note
that each of them gives rise to a square linear system. We work with two versions of the
algorithm, corresponding to two di�erent choices of the trilinear form C�h(·; ·; ·):

• Galerkin algorithm. In this case, the form C�h(·; ·; ·) simply coincides with C(·; ·; ·).
• Upwind algorithm. According to the ideas presented in References [36, 37] for instance,
we denote by E0h the set of edges of elements of Th which are not contained in @�.
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With any edge e in E0h, we associate a unit normal vector ne directed from a triangle K
of Th towards another triangle K ′. We introduce the mean value 	ue of the quantity u ·ne
on e, where u is a vector �eld continuous on �, and also, for any function t in L2(�),
the jump [t]e= 	tK′ − 	tK , where 	tK and 	tK′ stand for the mean values of t on K and K ′,
respectively. Then, the form C�h(·; ·; ·) is de�ned by

C�h(u; z; t)=−�
∑
e∈E0h

z+e [t]e
∫
e
u · ne d� (85)

where z+e denotes the mean value of z on K if � 	ue is nonnegative, and the mean value
of z on K ′ otherwise. Such a technique is known to enhance the convergence of the
algorithm when the transport term dominates, i.e. when |�| is large enough.

We now check the boundedness of the sequence resulting from the Galerkin algorithm.

Lemma 6.1
Let us assume that, for a constant c(�; �) only depending on � and the regularity parameter
� of the family (Th)h and a �xed value of a real number q¿2, the parameters h and � satisfy

c(�; �)|�|‖f‖L2(�)2�−1q1=2h1−2=q¡1 (86)

Then, in the case of the Galerkin method, the sequence (un; pn; zn)n¿1 of solutions of problem
(83)–(84) is bounded in Y∗

� .

Proof
We check successively the boundedness of (un)n¿1, (zn)n¿1 and (pn)n¿1.

(1) By taking vh equal to un in (83) and noting that A(zn−1; un; un) is zero, we obtain

c1(�)‖un‖H 1(�)26 ‖f‖L2(�)2 (87)

where c1(�) stands for the constant of the Poincar�e–Friedrichs inequality on �.
(2) Taking th equal to zn in (84), gives

‖zn‖2� + C(un; zn; zn)6 c(‖curl f‖L2(�) + ‖curl un‖L2(�))‖zn‖L2(�)

To evaluate the nonlinear term, we observe that

C(un; zn; zn)=
�
2

∫
�
un · ∇(zn)2 dx=−�

2

∫
�
(div un)(zn)2 dx

Thus, we derive from the second line of (83) that, for any th in Mh,

C(un; zn; zn)=−�
2

∫
�
(div un)((zn)2 − th) dx

whence

|C(un; zn; zn)|6
√
2
2

|�|‖un‖H 1(�)2‖(zn)2 − th‖L2(�)
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We have for any q∗, 1¡q∗6 2,

inf
th∈Mh

‖(zn)2 − th‖L2(�)6 c2(�)h2(1−(1=q
∗))|(zn)2|W 1; q∗ (�)

and also, by setting 1=q+ 1=2=1=q∗ and using the imbedding of H 1(�) into Lq(�),

|(zn)2|W 1; q∗ (�)6 2‖zn‖Lq(�)‖grad zn‖L2(�)26 c3(�)q1=2‖zn‖2H 1(�)2

Combining all this with (87), we obtain

‖zn‖2� − C0‖zn‖2� 6 c‖f‖H (curl;�)‖zn‖� (88)

where C0 denotes the quantity in the left-hand side of (86). Since C0 is ¡1 by
assumption, this leads to the estimate for ‖zn‖�.

(3) And �nally the bound for ‖pn‖L2(�) follows from the inf-sup condition (39) combined
with (87) and (88).

For a �xed value of �, the boundedness is only proven for h small enough, which is in
agreement with Theorem 4.5. It must be noted that Lemma 6.1 is not su�cient to derive
the convergence of the method. Moreover the convergence of the upwind algorithm is much
more di�cult to establish, even in the simple case of an uncoupled transport equation (see
Reference [37]). On the other hand, it follows from the arguments in Reference [30] (see also
Reference [20, Chapter IV, Theorem 6.3]) that, if the assumptions of Theorem 4.5 hold, for a
�xed value of �, there exists a neighbourhood of any solution of problem (16) independent of
h such that the Newton method with initial guess in this neighbourhood produces a sequence
which converges towards this solution. However Newton’s algorithm seems too expensive for
the present model.

Remark 6.2
The implementation of the upwind method is also slightly more expensive than that of the
Galerkin method, for the following reason: Let ai, 16 i6Nh, be the vertices of the triangles
of Th, and, for 16 i6Nh, let ’i denote the Lagrange function in Zh associated with the
node ai; then, the coe�cient C�h(un;’i; ’j) of the matrix associated with the transport term
in problem (84) vanishes whenever ai and aj do not belong to the same triangle in the case
of the Galerkin method and only when ai and aj do not belong to adjacent triangles for the
upwind method; so the matrix is less sparse in this last case.

6.2. Validation of the iterative algorithm

From now on, we work with the �rst choice of the space Xh, i.e. piecewise quadratic discrete
velocities. The �rst tests deal with the academic case of a domain � equal to the square
]0; 
[2, with the viscosity � equal to 1 and an analytical solution (u; p; z) of problem (2)
given by u= curl  and z=curl(u − ��u), with

 (x; y)= (y(
 − y) sin x)2; p(x; y)= cos x cos(2y) (89)

The data f are computed as a function of � and of this solution.
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Table I. Convergence for the Navier–Stokes equations (�=0).

n 2 4 6 8 10
0.124 0.084 0.066 0.045 0.035

n 12 14 16 18 20
0.029 0.021 0.020 0.016 0.013

Table II. Convergence of the two algorithms for �=−1.
n 2 4 6 8 10
Galerkin 3.322 2.988 2.475 1.644 0.794
Upwind 2.994 2.734 2.665 2.848 3.178

n 12 14 16 18 20
Galerkin 0.594 0.538 0.389 0.243 0.138
Upwind 3.514 3.804 4.009 4.116 4.131

Table III. Convergence of the two algorithms for �=0:1.

n 2 4 6 8 10
Galerkin 0.183 0.066 0.027 0.015 0.011
Upwind 0.385 0.272 0.212 0.236 0.228

n 12 14 16 18 20
Galerkin 0.011 0.011 0.011 0.011 0.011
Upwind 0.228 0.229 0.229 0.229 0.229

Table IV. Convergence of the two algorithms for �=1.

n 2 4 6 8 10
Galerkin 3.528 3.256 2.913 2.503 1.867
Upwind 3.057 2.738 2.527 2.555 2.817

n 12 14 16 18 20
Galerkin 1.059 0.761 0.762 0.663 0.487
Upwind 3.154 3.448 3.682 3.830 3.897

Table V. Convergence of the two algorithms for �=10.

n 2 4 6 8 10
Galerkin 608.0 256.8 77.53 50.68 69.10
Upwind 14.74 21.46 23.21 23.34 23.29

n 12 14 16 18 20
Galerkin 440.4 74.74 163.9 94.62 733.9
Upwind 23.27 23.26 23.36 23.42 23.49
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Figure 1. Error for the Galerkin algorithm as a function of h.
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Figure 2. Error for the upwind algorithm as a function of h.

In a �rst step, we construct a uniform triangulation of � into 800 triangles and take

h=


√
2
8

× 10−1 and �=10−3

We start with the initial guess z0 = 0, so that problem (83) for n=1 is nothing else than a
Stokes problem. Let En denote the relative error

En=
|u − un|H 1(�)2

|u|H 1(�)2
+

‖z − zn‖L2(�)

‖z‖L2(�)

We �rst consider the case �=0 of the Navier–Stokes equations. Since there is no convection
term in (84) in this case, the two algorithms coincide. Table I gives the values of the error
En for even values of n, 26 n6 20.
Tables II–V give the values of the error En for the same values of n as previously, both

for the Galerkin and upwind algorithms, corresponding to the following choices of the
parameter �:

�=−1; �=0:1; �=1; �=10 (90)
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Figure 3. The error indicators as a function of �.
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Figure 4. The error indicators as a function of h.

These tables call for two comments:

(i) The convergence rate decreases when |�| increases and at least the Galerkin algorithm
does not converge for �=10. This seems in good agreement with Lemma 6.1, see
condition (86).

(ii) The convergence of the upwind algorithm seems a little faster than that of the Galerkin
algorithm. However the �nal error E20 is larger for the upwind algorithm, which may
be due to the lower consistency of the scheme.

6.3. Validation of the discretization method

We work with the same solution (u; p; z) and the same initial guess z0 as previously. In view
of the poor convergence results for high values of �, we now work with

�=0; �=0:1; �=0:3 (91)
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We take the parameters h and � such that h= �3=2, the mesh still being uniform, and perform
n=10 iterations in all cases. Figure 1 presents the curves of the relative errors concerning
the velocity u (left part) and the unknown z (right part) for the Galerkin algorithm when h
decreases from 0.444 to 0.074. Figure 2 presents the same curves for the upwind algorithm.
The convergence of both methods for the choice h= �3=2 now seems clear, which is in

good agreement with the a priori analysis. It can be noted that the error increases with �
and also that the error in the approximation of z is very large but does not seem to pollute
too much the error in the velocity. It can also be noted that the error is not smaller for the
upwind algorithm than for the Galerkin method (and even is larger for �=0:3). Since the
implementation of the former is more expensive than for the latter, for reasons explained in
Remark 6.2, from now on we work with the Galerkin algorithm.

6.4. In�uence of the parameters � and h

We work with the same solution (u; p; z), the same initial guess z0, now with � equal to 0:1
and the Galerkin algorithm.
We construct a uniform triangulation of � such that h=0:074. Figure 3 presents in

bilogarithmic scales the curves the error indicator �� (dotted line) and the Hilbertian sums of
the �nite element indicators

�h]=

( ∑
K∈Th

�2K]

)1=2
and �h[=

( ∑
K∈Th

�2K[

)1=2
(92)

(dashed and plain lines) as a function of �, for � decreasing from 1 to 10−2.
Similarly, we �x � equal to 10−2. Figure 4 presents the curves of �� (dotted line), �h]

(dashed line) and �h[ (plain line) as a function of h, for h decreasing from 0.444 to 0.074.
It can be noted in Figure 4 that the indicator �� is nearly independent of h, so at least for

this indicator the two types of error are uncoupled. Further computations indicate that these
curves are similar to those for other values of �.

6.5. Some real life experiments

In the following simulations, we try to optimize the value of � when working with adap-
tive meshes, according to the following strategy (see Reference [33, Section 5] for its �rst
implementation for a di�erent problem).
We �rst choose a tolerance �∗, we perform a �rst computation on a quasi-uniform mesh

and compute ��.
Step 1: If �� is smaller than �∗, we go to Step 2. Otherwise, we divide � by the ratio ��=�∗

and perform a new computation.
Step 2: We compute the �K], the �K[ and their sum �K , next the mean value 	�h of these

�K . For all K such that �K is larger than 	�h, we divide K into smaller triangles or tetrahedra
such that the diameter of these new elements behaves like hK multiplied by the ratio 	�h=�K

(details on the procedure for realizing this can be found in Reference [38, Section 7.5.1]).
Step 2 is iterated 4 or 5 times.
Step 3: We compute �� and the Hilbertian sum �h of the �K . If �� is smaller than �h, we

return to Step 2. Otherwise, we divide � by a constant times the ratio ��=�h and return to
Step 2.
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Figure 5. The adapted mesh.

The union of Steps 2 and 3 can also be iterated, at most 3 times in order not to unnecessarily
increase the computational cost.
We apply this strategy in the following situation. We work on the unit square �= ]0; 1[2,

with �=0:01 and �=0:1. The data f here is equal to zero and replaced by the nonhomogenous
boundary conditions gb, corresponding to the so-called regularized driven cavity problem: gb

is equal to

gb(x; 1)=

(
4x(1− x)

0

)

on the top edge ]0; 1[× {1} and zero elsewhere. We start with a uniform mesh consisting of
188 triangles (h=0:141) and � equal to 0:01. We take �∗ equal to 0:01 and z0 equal to zero.
Figure 5 presents the �nal mesh (295 triangles). The �nal optimized value of � is 0.0024.

Figure 6 presents the isovalues of the stream function associated with u�h (left part) and of
the pressure (right part).
Finally, Figure 7 presents the isovalues of the stream function associated with u�h (left part)

and of the pressure (right part) in the case �=0 of the Navier–Stokes equations with the
same data. The only purpose of this last computation is to show that, even for small values
of �, the �ow of the grade-two �uid is di�erent from the �ow of a �uid governed by the
Navier–Stokes equations.
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(a) (b)

Figure 6. Isovalues of the stream function and of the pressure for �=0:1.

(a) (b)

Figure 7. Isovalues of the stream function and of the pressure for �=0.
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